Mutualistic interactions between free-living algae and fungi are widespread in nature and are hypothesized to have facilitated the evolution of land plants and lichens. In all known algal-fungal mutualisms, including lichens, algal cells remain external to fungal cells. Here, we report on an algal–fungal interaction in which Nannochloropsis oceanica algal cells become internalized within the hyphae of the fungus Mortierella elongata. This apparent symbiosis begins with close physical contact and nutrient exchange, including carbon and nitrogen transfer between fungal and algal cells as demonstrated by isotope tracer experiments. This mutualism appears to be stable, as both partners remain physiologically active over months of co-cultivation, leading to the eventual internalization of photosynthetic algal cells, which persist to function, grow and divide within fungal hyphae. Nannochloropsis and Mortierella are biotechnologically important species for lipids and biofuel production, with available genomes and molecular tool kits. Based on the current observations, they provide unique opportunities for studying fungal-algal mutualisms including mechanisms leading to endosymbiosis.