Advances in implantable bioelectronics for the nervous system are reinventing the stimulation, inhibition, and sensing of neuronal activity. These efforts promise not just breakthrough treatments of several neurological and psychiatric conditions but also signal the beginning of a new era of computer‐controlled human therapeutics. Batteries remain the major power source for all implanted electrical neuromodulation devices, which impairs miniaturization and necessitates replacement surgery when the battery is drained. Triboelectric nanogenerators (TENGs) have recently emerged as an innovative power solution for self‐powered, closed loop electrical neurostimulation devices. TENGs can leverage the biomechanical activities of different body organs to sustainably generate electricity for electrical neurostimulation. This review features advances in TENGs as they pave the way for self‐sustainable closed loop neurostimulation. A comprehensive review of TENG research for the neurostimulation of brain, autonomic, and somatic nervous systems is provided. The direction of growth of this field, publication trends, and modes of TENG in implantable bioelectronics are also discussed. Finally, an insightful outlook into challenges facing self‐sustainable neuromodulators to reach clinical practice is provided, and solutions for neurological maladies are proposed.