Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recently, smart contracts have played a vital role in automatic financial and business transactions. To help end users without programming background to better understand the logic of smart contracts, previous studies have proposed models for automatically translating smart contract source code into their corresponding code summaries. However, in practice, only 13% of smart contracts deployed on the Ethereum blockchain are associated with source code. The practical usage of these existing tools is significantly restricted. Considering that bytecode is always necessary when deploying smart contracts, in this paper, we first introduce the task of automatically generating smart contract code summaries from bytecode. We propose a novel approach, named S mart BT ( Smart contract B ytecode T ranslator) for automatically translating smart contract bytecode into fine-grained natural language description directly. Two key challenges are posed for this task: structural code logic hidden in bytecode and the huge semantic gap between bytecode and natural language descriptions. To address the first challenge, we transform bytecode into CFG (Control-Flow Graph) to learn code structural and logic details. Regarding the second challenge, we introduce an information retrieval component to fetch similar comments for filling the semantic gap. Then the structural input and semantic input are used to build an attentional sequence-to-sequence neural network model. The copy mechanism is employed to copy rare words directly from similar comments and the coverage mechanism is employed to eliminate repetitive outputs. The automatic evaluation results show that SmartBT outperforms a set of baselines by a large margin, and the human evaluation results show the effectiveness and potential of SmartBT in producing meaningful and accurate comments for smart contract code from bytecode directly.
Recently, smart contracts have played a vital role in automatic financial and business transactions. To help end users without programming background to better understand the logic of smart contracts, previous studies have proposed models for automatically translating smart contract source code into their corresponding code summaries. However, in practice, only 13% of smart contracts deployed on the Ethereum blockchain are associated with source code. The practical usage of these existing tools is significantly restricted. Considering that bytecode is always necessary when deploying smart contracts, in this paper, we first introduce the task of automatically generating smart contract code summaries from bytecode. We propose a novel approach, named S mart BT ( Smart contract B ytecode T ranslator) for automatically translating smart contract bytecode into fine-grained natural language description directly. Two key challenges are posed for this task: structural code logic hidden in bytecode and the huge semantic gap between bytecode and natural language descriptions. To address the first challenge, we transform bytecode into CFG (Control-Flow Graph) to learn code structural and logic details. Regarding the second challenge, we introduce an information retrieval component to fetch similar comments for filling the semantic gap. Then the structural input and semantic input are used to build an attentional sequence-to-sequence neural network model. The copy mechanism is employed to copy rare words directly from similar comments and the coverage mechanism is employed to eliminate repetitive outputs. The automatic evaluation results show that SmartBT outperforms a set of baselines by a large margin, and the human evaluation results show the effectiveness and potential of SmartBT in producing meaningful and accurate comments for smart contract code from bytecode directly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.