The ash yield, composition, mineral phases, and other physical and chemical properties of various biomass ashes are dependent on ashing temperature. To fully understand the impacts of biomass species and ashing temperature on the characterization of biomass ashes, three kinds of biomass fuels were treated at different ashing temperatures to produce biomass ashes. Their properties were analyzed by a series of qualitative and quantitative methods, including X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermal gravimetric, and differential thermal analyzer (TG-DTA). The experimental results indicated that as the ashing temperature was raised, the ash slagging tendency could be enhanced. The fused layer on the surface of ash particles was coated with potassium chloride, which was the key reason for the development of severe agglomeration and slagging. Due to the high carbon content and large number of pores in the lower temperature ashes, a low-cost adsorbent could be developed effectively from these carbon materials. The thermal decomposition of all ashes showed a stepwise mechanism. The total weight loss of the same biomass ash decreased with increased ashing temperature, which corresponded well with the phase transitions and thermal reaction sequences.