Semantic Non-Negative Matrix Factorization for Term Extraction
Aliya Nugumanova,
Almas Alzhanov,
Aiganym Mansurova
et al.
Abstract:This study introduces an unsupervised term extraction approach that combines non-negative matrix factorization (NMF) with word embeddings. Inspired by a pioneering semantic NMF method that employs regularization to jointly optimize document–word and word–word matrix factorizations for document clustering, we adapt this strategy for term extraction. Typically, a word–word matrix representing semantic relationships between words is constructed using cosine similarities between word embeddings. However, it has be… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.