Abstract-Semantic and Sentiment analysis have received a great deal of attention over the last few years due to the important role they play in many different fields, including marketing, education, and politics. Social media has given tremendous opportunities for researchers to collect huge amount of data as input for their semantic and sentiment analysis. Using twitter API, we collected around 4.5 million Arabic tweets and used them to propose a novel automatic unsupervised approach to capture patterns of words and sentences of similar contextual semantics and sentiment in informal Arabic language at word and sentence levels.