International Conference on Computing, Communication &Amp; Automation 2015
DOI: 10.1109/ccaa.2015.7148366
|View full text |Cite
|
Sign up to set email alerts
|

Semantic sentiment analysis using context specific grammar

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…Para la clasificación de sentimientos en opiniones de películas (Bhuvan, Rao, Jain, Mohana, & Guddeti, 2015) definen patrones de expresiones comúnmente empleadas para la manifestación de sentimientos positivos y negativos. Así, la cantidad de veces que se presentan los diferentes patrones en el texto a analizar se constituyen en características.…”
Section: Extracción De Características Y Otorgamientos De Pesosunclassified
“…Para la clasificación de sentimientos en opiniones de películas (Bhuvan, Rao, Jain, Mohana, & Guddeti, 2015) definen patrones de expresiones comúnmente empleadas para la manifestación de sentimientos positivos y negativos. Así, la cantidad de veces que se presentan los diferentes patrones en el texto a analizar se constituyen en características.…”
Section: Extracción De Características Y Otorgamientos De Pesosunclassified
“…For example, Spark has been used for handling Big Data for drug discovery [16], Big Data analytics [23], sequence alignment [43], network anomaly detection [36], predicitive machine learning on historical data [44] and sentiment analysis [6].…”
Section: Spark For Big Data Processingmentioning
confidence: 99%
“…The context terms are used to model the relations between the identified key terms to identify the most suitable context for each key term. Bhuvan et al [41] proposed a context-specific grammar model of semantics for movie reviews domain where features are obtained from matching semantics patterns. The proposed model is tested using various machine learning algorithms such as Naï ve Bayes, SVM, Logistic Regression and Sequential Minimal Optimization.…”
Section: Related Researches Of Context-based Approachmentioning
confidence: 99%