Being able to teach complex capabilities, such as folding garments, to a bi-manual robot is a very challenging task, which is often tackled using learning from demonstration datasets. The few garment folding datasets available nowadays to the robotics research community are either gathered from human demonstrations or generated through simulation. The former have the huge problem of perceiving human action and transferring it to the dynamic control of the robot, while the latter requires coding human motion into the simulator in open loop, resulting in far-from-realistic movements. In this article, we present a reduced but very accurate dataset of human cloth folding demonstrations. The dataset is collected through a novel virtual reality (VR) framework we propose, based on Unity’s 3D platform and the use of a HTC Vive Pro system. The framework is capable of simulating very realistic garments while allowing users to interact with them, in real time, through handheld controllers. By doing so, and thanks to the immersive experience, our framework gets rid of the gap between the human and robot perception-action loop, while simplifying data capture and resulting in more realistic samples.