2017
DOI: 10.5194/isprs-annals-iv-1-w1-91-2017
|View full text |Cite
|
Sign up to set email alerts
|

SEMANTIC3D.NET: A New Large-Scale Point Cloud Classification Benchmark

Abstract: ABSTRACT:This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or objec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
326
0
3

Year Published

2018
2018
2021
2021

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 570 publications
(329 citation statements)
references
References 54 publications
0
326
0
3
Order By: Relevance
“…La préparation de ces jeux de données représente plusieurs difficultés compte tenu de la grande superficie à couvrir et donc de la quantité massive de points contenus dans les fichiers, du nombre important d'instances de classes à inclure dans les échantillons d'apprentissage et de tests, de la nécessité de labelliser et de segmenter les points souvent effectué de manière manuelle. Malgré ces difficultés, plusieurs initiatives ont déjà été lancées en ce sens (Paparoditis et al 2014;Serna et al 2014;Hackel et al 2017).…”
Section: Discussionunclassified
“…La préparation de ces jeux de données représente plusieurs difficultés compte tenu de la grande superficie à couvrir et donc de la quantité massive de points contenus dans les fichiers, du nombre important d'instances de classes à inclure dans les échantillons d'apprentissage et de tests, de la nécessité de labelliser et de segmenter les points souvent effectué de manière manuelle. Malgré ces difficultés, plusieurs initiatives ont déjà été lancées en ce sens (Paparoditis et al 2014;Serna et al 2014;Hackel et al 2017).…”
Section: Discussionunclassified
“…In this work, we introduce the use of real semantics, resulting from a classifier, by using PointNet [5], a deep-learning framework to learn semantic labels from data. In this paper, we examine the registration procedure by using the manually labeled data set Semantic3d.net [6].…”
Section: Related Workmentioning
confidence: 99%
“…We use the Semantic3d.net [6], a large-scale point cloud classification benchmark. The data set contains 30 labeled scans, from rural and urban scenes, in total of 4 billion points.…”
Section: Dataset a Simulated Datamentioning
confidence: 99%
See 1 more Smart Citation
“…To conduct such experiments and evaluations, the benchmark dataset or the ground truth are normally required. In fact, lots of efforts have been paid to the generation of the benchmark dataset in the community of point clouds processing, for example, the ISPRS Benchmark Test on Urban Object Detection and Reconstruction, containing challenging aerial laser scanning point clouds for 3D object reconstruction , semantic 3D benchmark for classification having large-scale terrestrial point clouds of various urban, suburban, and rural scene (Hackel et al, 2017).…”
Section: Introductionmentioning
confidence: 99%