More than 50% of caudates are threatened with extinction and are in need ofex-situbreeding programs to support conservation efforts and species recovery. Unfortunately, many salamander populations under human care can experience reproductive failure, primarily due to missing environmental cues necessary for breeding. Assisted reproductive technologies (ARTs) are a useful suite of techniques for overcoming or bypassing these missing environmental cues to promote breeding. Exogenous hormones are used to stimulate natural breeding behaviors or gamete expression forin-vitrofertilization or biobanking and are typically administered intramuscularly in caudates. While effective, intramuscular injection is risky to perform in smaller-bodied animals, resulting in health and welfare risks. This research investigated the spermiation response to hormone administration through a non-invasive oral route using the tiger salamander (Ambystoma tigrinum) as a model species. Male salamanders were randomly rotated six weeks apart through four treatments (n = 11 males/treatment) in which animals received a resolving dose of gonadotropin-releasing hormone (GnRH) as follows: (1) Prime-Only (0.0 µg/g); (2) Low (0.25 µg/g); (3) Medium (1.0 µg/g); and (4) High (2.0 µg/g). All males were given a GnRH priming dose (0.25 µg/g) 24 hours prior to the resolving dose. Exogenous hormone was delivered inside of a cricket (Gryllodes sigillatus) that was presented as a food item by tweezers. Sperm samples were collected at 1, 3, 6, 9, 12, and 24 hours after the resolving dose and analyzed for quantity and quality. For all treatments, sperm concentration was produced in an episodic pattern over time. The Prime-Only treatment had a lower (p < 0.05) percent of sperm exhibiting normal morphology compared to treatments utilizing a resolving dose of GnRH. Overall, oral administration of GnRH is a feasible route of inducing spermiation in salamanders, yielding sperm of sufficient quantity and quality forin-vitrofertilization and biobanking efforts.