The development and the application of the scaled boundary finite element method for fracture analysis is reviewed. In this method, polygonal elements (referred to as subdomains) of arbitrary number of edges are constructed, with the only limitation that the whole boundary is directly visible from the scaling centre. The element solution is semianalytical. When applied to two-dimensional linear fracture mechanics, any kinds of stress singularities are represented analytically without local refinement, special elements and enrichment functions. The flexibility of polygonal elements in geometric shape leads to simple yet efficient remeshing algorithms to model crack propagation. Coupling procedures with the extended finite element method, meshless method and boundary element method to handle changes in the crack morphology have been established. These developments result in an efficient framework for fracture modelling. Examples of applications are provided to demonstrate their feasibility.