The aim of this paper is to use the combination of Reproducing kernel Hilbert space method (RKHSM) and fractional differential transform method (FDTM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutions of this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provide the theoretical basis of the proposed algorithm. Some numerical examples indicate that this method is an efficient one to solve the mentioned equations.