Although most pipes are restrained by retaining clips in aircrafts, the influence of the clip parameters on the vibration of the fluid-conveying pipe has not been revealed. By considering the clip width, a new dynamic model of a fluid-conveying pipe restrained by an intermediate clip is established in this paper. To demonstrate the necessity of the proposed model, a half pipe model is established by modeling the clip as one end. By comparing the two models, it is found that the half pipe model overestimates the critical velocity and may estimate the dynamical behavior of the pipe incorrectly. In addition, with the increase in the clip stiffness, the conversion processes of the first two modes of the pipe are shown. Furthermore, by ignoring the width of the clip, the effect of the flow velocity on the accuracy of a concentrated restraint clip model is presented. When the flow velocity is close to the critical velocity, the accuracy of the concentrated restraint clip model significantly reduces, especially when the width of the clip is large. In general, the contribution of this paper is to establish a dynamic model of the fluid-conveying pipe which can describe the influence of the clip parameters, and to demonstrate the necessity of this model.