In order to reduce the mechanical damage during the kiwifruit picking process, the fruit rate of the picked fruit should be improved. The mechanical properties of the epidermis and interior of the fruit during the harvesting process were studied, so as to analyze the damage principle of the fruit. Firstly, a three-dimensional model of kiwifruit was constructed by point cloud scanning, and the flesh and placenta were filled in order to become a complete kiwifruit model. The elastic modulus, failure stress, and density of the kiwifruit skin, flesh, and placenta were obtained experimentally, and the material properties of the kiwifruit model were endowed with properties. Secondly, the finite element method was used to analyze the epidermis and internal stress of the kiwifruit by simulating the two processes of grabbing kiwifruit and picking to fruit boxes. The results show that the relative error of the simulation and test of the simulated grasping of kiwifruit was 6.42%, and the simulation and test of picking to fruit box confirmed the existence of damage, and the reflectivity of the damaged point in the detection was 6.18% on average, and the hardness value decreased to 8.30 on average. The results from this study can provide a reference for control strategies and damage avoidance during grasping.