Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics 2020
DOI: 10.1145/3405962.3405977
|View full text |Cite
|
Sign up to set email alerts
|

Semi-automatic extraction and validation of concepts in ontology learning from texts in Spanish

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 23 publications
0
2
0
1
Order By: Relevance
“…Gomez Suta et al (20) Colombian Armed Conflict Spanish Domain Related Online Articles TF-IDF, TF-Entropy Table 1 summarizes existing approaches for building domain ontologies using text extraction methods. It was evidence that the researchers have worked on various domains with a reasonable amount of textual content.…”
Section: Englishmentioning
confidence: 99%
See 1 more Smart Citation
“…Gomez Suta et al (20) Colombian Armed Conflict Spanish Domain Related Online Articles TF-IDF, TF-Entropy Table 1 summarizes existing approaches for building domain ontologies using text extraction methods. It was evidence that the researchers have worked on various domains with a reasonable amount of textual content.…”
Section: Englishmentioning
confidence: 99%
“…M. Gomez Suta et al (20) suggested a semi-automated approach for converting Spanish texts into ontology structures involving identifying terms, concepts, and their relationships. This process also includes the participation of human experts in validating the identified terms.…”
Section: Introductionmentioning
confidence: 99%
“…En (Gómez-Suta et al, 2020) proponen validar entidades ontológicas a través de la medida topic coherence y una evaluación basada en la tarea de clusterización semántica de los documentos (Ali & Melton, 2018), para esto los autores establecen estos elementos ontológicos mediante algoritmos de detección de comunidades que parten de la matriz de coocurrencia. Los algoritmos de detección de comunidades agrupan nodos (términos) que comparten propiedades comunes o poseen roles similares dentro del grafo (Fortunato, 2010).…”
Section: Planteamiento Del Problema Y Justificaciónunclassified