2018
DOI: 10.5186/aasfm.2018.4323
|View full text |Cite
|
Sign up to set email alerts
|

Semi-hyperbolic rational maps and size of Fatou components

Abstract: Recently, Merenkov and Sabitova introduced the notion of a homogeneous planar set. Using this notion they proved a result for Sierpiński carpet Julia sets of hyperbolic rational maps that relates the diameters of the peripheral circles to the Hausdorff dimension of the Julia set. We extend this theorem to Julia sets (not necessarily Sierpiński carpets) of semi-hyperbolic rational maps, and prove a stronger version of the theorem that was conjectured by Merenkov and Sabitova.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 28 publications
0
2
0
Order By: Relevance
“…This implies that, given any 0<εε0$0&lt;\varepsilon \leqslant \varepsilon _0$, σfalse{zU0pt:false|μ(z)false|1goodbreak−εfalse}L2(diamscriptU)2σfalse{zPΓr(scriptU)0pt:false|μ(z)false|1goodbreak−εfalse}.$$\begin{align} \sigma {\left(\lbrace z\in \mathcal {U}^{\prime }\colon |\mu (z)|\geqslant 1-\varepsilon \rbrace \right)}\leqslant L^2(\operatorname{diam}{\mathcal {U}^{\prime }})^2\sigma {\left(\lbrace z\in P_\Gamma ^{\circ r}(\mathcal {U}^{\prime })\colon |\mu (z)|\geqslant 1-\varepsilon \rbrace \right)}. \end{align}$$Moreover, since all the Fatou components scriptU$\mathcal {U}^{\prime }$ are uniform John domains [38, Proposition 10], it follows from [50, p. 444] that there exists a constant C1>0$C_1&gt;0$ such that (diamscriptU)2C1σU,$$\begin{align} (\operatorname{diam}{\mathcal {U}^{\prime }})^2\leqslant C_1\sigma {\left(\mathcal {U}^{\prime }\right)}, \end{align}$$for all strictly preperiodic Fatou components scriptU$\mathcal {U}^{\prime }$ of PnormalΓ$P_\Gamma$. Putting inequalities (), (), (), and () together, we obtain our ...…”
Section: Pinching Laminations and Mateability Of Bers Boundary Groupsmentioning
confidence: 99%
“…This implies that, given any 0<εε0$0&lt;\varepsilon \leqslant \varepsilon _0$, σfalse{zU0pt:false|μ(z)false|1goodbreak−εfalse}L2(diamscriptU)2σfalse{zPΓr(scriptU)0pt:false|μ(z)false|1goodbreak−εfalse}.$$\begin{align} \sigma {\left(\lbrace z\in \mathcal {U}^{\prime }\colon |\mu (z)|\geqslant 1-\varepsilon \rbrace \right)}\leqslant L^2(\operatorname{diam}{\mathcal {U}^{\prime }})^2\sigma {\left(\lbrace z\in P_\Gamma ^{\circ r}(\mathcal {U}^{\prime })\colon |\mu (z)|\geqslant 1-\varepsilon \rbrace \right)}. \end{align}$$Moreover, since all the Fatou components scriptU$\mathcal {U}^{\prime }$ are uniform John domains [38, Proposition 10], it follows from [50, p. 444] that there exists a constant C1>0$C_1&gt;0$ such that (diamscriptU)2C1σU,$$\begin{align} (\operatorname{diam}{\mathcal {U}^{\prime }})^2\leqslant C_1\sigma {\left(\mathcal {U}^{\prime }\right)}, \end{align}$$for all strictly preperiodic Fatou components scriptU$\mathcal {U}^{\prime }$ of PnormalΓ$P_\Gamma$. Putting inequalities (), (), (), and () together, we obtain our ...…”
Section: Pinching Laminations and Mateability Of Bers Boundary Groupsmentioning
confidence: 99%
“…For M>0$M&gt;0$, we say that two bounded regions D1,D2$D_1,D_2$ are M$M$‐relatively separated if Δfalse(D1,D2false)prefixdist(D1,D2)min{prefixdiamfalse(D1false),prefixdiamfalse(D2false)}M.\begin{align*} \Delta (D_1,D_2) \coloneqq \frac{\operatorname{{\mathrm{dist}}}(D_1,D_2)}{\min \lbrace \operatorname{{\mathrm{diam}}}(D_1),\operatorname{{\mathrm{diam}}}(D_2)\rbrace } \geqslant M. \end{align*}Moreover, we say that a Jordan curve C$C$ is an M$M$‐quasicircle if for any two points z,wC$z,w\in C$ there exists an arc A$A$ of C$C$ connecting z$z$ and w$w$ such that diamfalse(Afalse)Mfalse|zwfalse|$\operatorname{{\mathrm{diam}}}(A)\leqslant M|z-w|$. It is proved in [18, Proposition 4.1] that the residual set of a planar packing P$\mathcal {P}$ by Jordan regions …”
Section: Introductionmentioning
confidence: 99%