2013
DOI: 10.12785/jsap/020313
|View full text |Cite
|
Sign up to set email alerts
|

Semi-Markov Model of a Series-Parallel System Subject to Preventive Maintenance

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 8 publications
0
2
0
1
Order By: Relevance
“…The application of probability distributions in survival analysis is common as it enables the modeling of data and facilitates an understanding of the underlying parameters and functions. This approach was motivated by the need to enhance the flexibility of the model in describing intricate real-world scenarios [14][15][16][17][18]. We compare fitted models by using Kolmogorov-Smirnov test, and Anderson Darling test.…”
Section: Model Establishment and Inspectionmentioning
confidence: 99%
“…The application of probability distributions in survival analysis is common as it enables the modeling of data and facilitates an understanding of the underlying parameters and functions. This approach was motivated by the need to enhance the flexibility of the model in describing intricate real-world scenarios [14][15][16][17][18]. We compare fitted models by using Kolmogorov-Smirnov test, and Anderson Darling test.…”
Section: Model Establishment and Inspectionmentioning
confidence: 99%
“…A wide and recent study of preventive maintenance models was analyzed by [26]. [27] analyzed a series-parallel system with preventive maintenance using semi-Markov process.…”
Section: Introductionmentioning
confidence: 99%
“…La transformación de la distribución se invierte analíticamente para obtener una solución de forma cerrada para el modelo de Markov correspondiente; Rubino y Sericola [12] consideran un sistema informático reparable con dos estados, primero tratan con procesos semi-Markov, y bajo algunas condiciones desarrollan un método para calcular la distribución de disponibilidad; Sericola [19] define un nuevo algoritmo para calcular la distribución de disponibilidad de intervalos para sistemas que tienen un solo estado operativo. Existen artículos en los que se han estudiado estructuras reparables dispuestas en paralelo, como se puede observar en Hu et al [20], quienes estudian la equivalencia de disponibilidad de diferentes diseños de un sistema en serie paralelo reparable, bajo el supuesto de que los componentes del sistema tienen tasas de falla y reparación constantes; Csenki [21] presenta una nueva aproximación del tiempo operacional acumulativo para modelos de sistemas reparables, y El-Damcese et al [22] analizan un sistema en serie-paralelo mediante el uso del proceso semi-Markov, en donde hay espacio para realizar mantenimiento preventivo…”
unclassified