Semi-RainGAN: A Semisupervised Coarse-to-Fine Guided Generative Adversarial Network for Mixture of Rain Removal
Rongwei Yu,
Ni Shu,
Peihao Zhang
et al.
Abstract:Images taken in various real-world scenarios meet the symmetrical goal of simultaneously removing foreground rain-induced occlusions and restoring the background details. This inspires us to remember the principle of symmetry; real-world rain is a mixture of rain streaks and rainy haze and degrades the visual quality of the background. Current efforts formulate image rain streak removal and rainy haze removal as separate models, which disrupts the symmetrical characteristics of real-world rain and background, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.