Semi-Siamese Bi-encoder Neural Ranking Model Using Lightweight Fine-Tuning
Euna Jung,
Jaekeol Choi,
Wonjong Rhee
Abstract:A BERT-based Neural Ranking Model (NRM) can be either a crossencoder or a bi-encoder. Between the two, bi-encoder is highly efficient because all the documents can be pre-processed before the actual query time. Although query and document are independently encoded, the existing bi-encoder NRMs are Siamese models where a single language model is used for consistently encoding both of query and document. In this work, we show two approaches for improving the performance of BERT-based bi-encoders. The first appro… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.