Ti6Al4V (Ti64) alloy is the most used metal material for bone implants because of its good biocompatibility and adapted mechanical properties. Nevertheless, it shows low antibacterial activity, which may favor its failure. Addition of antibacterial elements such as copper should avoid this drawback. This work studies the addition of Cu into a Ti64 matrix resulting in Ti64/xCu composites. Powder mixtures of Ti64/xCu were compacted in a die and then sintered at 1100 °C. Sintering kinetics indicate that densification is achieved by pore filling due to eutectic liquid formed by the reaction of Ti and Cu. The microstructure of the sintered samples is composed mainly of α-Ti and Ti2Cu phases, but TixCuy intermetallics were also found. Microhardness is increased by the addition of Cu due to densification and the formation of harder phases such as Ti2Cu. However, the stiffness and compression strength are barely the same for all composites. The corrosion resistance is significantly improved by the addition of Cu. Finally, the material with 15 wt% of copper showed the best compromise.