Induction heating is a fast, reproducible, and efficient heating method used in various manufacturing processes. However, there is no established additive manufacturing (AM) process based on induction heating using wire as feedstock. This study investigates a novel approach to AM based on inductive heating, where a steel wire is melted and droplets are detached periodically using a two-winding induction coil. The process parameters and energy input into the droplets are characterized. The induction generator exhibits sluggish response to the excitation voltage, resulting in a lag in the coil current. The process is captured using a high-speed camera, revealing regular droplet formation and uniform size and shape when operated within an appropriate process window. Larger drops and increased spatter formation occur outside this window. The proposed method allows for the production of droplets with almost spherical shapes. Further analysis and characterization of droplet formation and energy input provide insights into process optimization and overall efficiency.