During wound healing, contractions occur due to the pulling forces released by (myo)fibroblasts. We consider a cell-based approach in which the balance of momentum is used to predict the cellular impact on the mechanics of the tissue. To this extent, the elasticity equation and Dirac Delta distributions are combined. However, Dirac Delta distributions cause a singular solution. Hence, alternative approaches are developed and a Gaussian distribution is often used as a smoothed approach. Based on the application that the pulling force is pointing inward the cell, the smoothed particle approach is probed as well. In one dimension, it turns out that the aforementioned three approaches are consistent. In fact, we are aware that the similar transformation exists in three dimensional electric dipole moment. For two dimensions, the ratio of the force magnitude is only worked out in special case, but for the general case, the numerical results show consistency between the direct approach and the smoothed particle approach.