Дніпровський національний університет імені Олеся Гончара
ВИКОРИСТАННЯ ПІДХОДІВ АКТИВНОГО НАВЧАННЯ ПІД ЧАС ПОБУДОВИ МОДЕЛЕЙ МАШИННОГО НАВЧАННЯУ роботі описані основні стратегії активного навчання, методи вибору об'єктів та основні прикладні задачі, в яких використання підходів активного навчання може суттєво зменшити вартість розмічування даних. Розглянуті варіанти використання методів активного навчання у поєднання з глибокими нейронними мережами.Ключові слова: активне навчання, human-in-the-loop, глибинне навчання.Nowadays, we have access to a huge amount of data that can be received from different sources: digitization of healthcare, the internet of things, social networks, online stores, and more others. And today the using of deep neural networks models for model creation has become incredibly popular. All these models require the availability of big data sets for training to be able to find hidden relationships between input data and output target variables, and this data for supervised learning tasks should be labeled. But the cost of data labeling in many cases can be quite high and may require the involvement of highly qualified experts. Therefore, there is a need to use active learning approaches, the main goal of which is to reduce the cost of data labeling due to the directed selection of objects of an unlabeled data set, which allows to increase the accuracy of machine learning models, while reducing the cost of data labeling. The goal of this article is the survey of such existing approaches and applied areas for using them. Three main scenarios of requests for unlabeled objects were observed in this work: pool-based sampling, streambased selective sampling, membership query synthesis. Among the methods of object selection, most popular methods were chosen, they are uncertainty sampling, Query-By-Committee, expected model change, variance reduction, estimated error reduction. Also, in this article different areas of using active learning were observed, such as medical image analysis, tasks of ranking search results, as well as the approaches to improving active learning methods.