2023
DOI: 10.1016/j.cmpbup.2023.100096
|View full text |Cite
|
Sign up to set email alerts
|

Semi-supervised active transfer learning for fetal ECG arrhythmia detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(7 citation statements)
references
References 22 publications
0
6
0
1
Order By: Relevance
“…In 1967, Cover and Hart designed a simple supervised machine learning approach to categorize patterns [ 30 ]. The algorithm operates by sorting query data points according to the votes received from the k-nearest data points.…”
Section: Methodsmentioning
confidence: 99%
“…In 1967, Cover and Hart designed a simple supervised machine learning approach to categorize patterns [ 30 ]. The algorithm operates by sorting query data points according to the votes received from the k-nearest data points.…”
Section: Methodsmentioning
confidence: 99%
“…Фреймворк використовує часткові анотації, навчання з частковим залученням вчителя і оцінюванням розмічування, що дозволило значно скоротити час, необхідний для точної сегментації великих наборів гістологічних даних. А у роботі [8] активне навчання було використано для розмічування набору даних призначеного для виявлення аритмії на електрокардіограмі плода .…”
Section: рисунок 1 -цикл активного навчанняunclassified
“…ECG CAD systems can serve as a valuable tool for medical professionals, facilitating objective diagnosis [3]. The association between different ECG records can be established through supervised [7], semisupervised [8], or unsupervised [9] ML approaches. Supervised learning entails training a model on a labeled dataset where ground-truth labels are known for each record.…”
Section: Introductionmentioning
confidence: 99%
“…Lower-level layers typically extract fundamental features like edges and color, while higher layers progressively abstract these features into semantically meaningful representations of the input [21]. This characteristic has spurred an active research field exploring the transferability of knowledge gained from pretrained models to the domain of ECG arrhythmia detection [8,22]. Alternatively, pretrained CNN models can be utilized as unsupervised feature extractors, bypassing the need for fine-tuning [23].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation