2022
DOI: 10.3311/ppch.18834
|View full text |Cite
|
Sign up to set email alerts
|

Semi-supervised Clustering Algorithm for Retention Time Alignment of Gas Chromatographic Data

Abstract: Gas chromatography (GC) is an effective tool for the analysis of complex mixtures with a huge number of components. To keep tracking the chemical changes during the processes like plastic waste pyrolysis usually different sample states are profiled, but retention time drifts between the chromatograms make the comparability difficult. The aim of this study is to develop a fast and simple method to eliminate the time drifts between the chromatograms using easily accessible priori information. The proposed method… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 13 publications
(20 reference statements)
0
0
0
Order By: Relevance