Abstract:Continuously operated (bio-)chemical processes increasingly suffer from external disturbances, such as feed fluctuations or changes in market conditions. Product quality often hinges on control of rarely measured concentrations, which are expensive to measure. Semi-supervised regression is a possible building block and method from machine learning to construct soft-sensors for such infrequently measured states. Using two case studies, i.e., the Williams-Otto process and a bioethanol production process, semi-su… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.