Objective
We aimed to compare the aortic valve area (AVA) calculated using fast high-resolution three-dimensional (3D) magnetic resonance (MR) image acquisition with that of the conventional two-dimensional (2D) cine MR technique.
Materials and Methods
We included 139 consecutive patients (mean age ± standard deviation [SD], 68.5 ± 9.4 years) with aortic valvular stenosis (AS) and 21 asymptomatic controls (52.3 ± 14.2 years). High-resolution T2-prepared 3D steady-state free precession (SSFP) images (2.0 mm slice thickness, 10 contiguous slices) for 3D planimetry (3DP) were acquired with a single breath hold during mid-systole. 2D SSFP cine MR images (6.0 mm slice thickness) for 2D planimetry (2DP) were also obtained at three aortic valve levels. The calculations for the effective AVA based on the MR images were compared with the transthoracic echocardiographic (TTE) measurements using the continuity equation.
Results
The mean AVA ± SD derived by 3DP, 2DP, and TTE in the AS group were 0.81 ± 0.26 cm
2
, 0.82 ± 0.34 cm
2
, and 0.80 ± 0.26 cm
2
, respectively (
p
= 0.366). The intra-observer agreement was higher for 3DP than 2DP in one observer: intraclass correlation coefficient (ICC) of 0.95 (95% confidence interval [CI], 0.94–0.97) and 0.87 (95% CI, 0.82–0.91), respectively, for observer 1 and 0.97 (95% CI, 0.96–0.98) and 0.98 (95% CI, 0.97–0.99), respectively, for observer 2. Inter-observer agreement was similar between 3DP and 2DP, with the ICC of 0.92 (95% CI, 0.89–0.94) and 0.91 (95% CI, 0.88–0.93), respectively. 3DP-derived AVA showed a slightly higher agreement with AVA measured by TTE than the 2DP-derived AVA, with the ICC of 0.87 (95% CI, 0.82–0.91) vs. 0.85 (95% CI, 0.79–0.89).
Conclusion
High-resolution 3D MR image acquisition, with single-breath-hold SSFP sequences, gave AVA measurement with low observer variability that correlated highly with those obtained by TTE.