We obtain an asymptotic expansion of the hyperbolic umbilic catastrophe integral $$\Psi ^{(H)}(x,y,z):= \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\exp (i(s^3+t^3+zst$$
Ψ
(
H
)
(
x
,
y
,
z
)
:
=
∫
-
∞
∞
∫
-
∞
∞
exp
(
i
(
s
3
+
t
3
+
z
s
t
$$+yt+xs))\mathrm{{d}}s\,\mathrm{{d}}t$$
+
y
t
+
x
s
)
)
d
s
d
t
for large values of |x| and bounded values of |y| and |z|. The expansion is given in terms of Airy functions and inverse powers of x. There is only one Stokes ray at $$\arg x=\pi $$
arg
x
=
π
. We use the modified saddle point method introduced in (López et al. J Math Anal Appl 354(1):347–359, 2009). The accuracy and the asymptotic character of the approximations are illustrated with numerical experiments.