In this paper we study in detail the localized wave functions defined in Phys. Rev. Lett. 76, 1613Lett. 76, (1994, in connection with the scarring effect of unstable periodic orbits in highly chaotic Hamiltonian system. These functions appear highly localized not only along periodic orbits but also on the associated manifolds. Moreover, they show in phase space the hyperbolic structure in the vicinity of the orbit, something which translates in configuration space into the structure induced by the corresponding self-focal points. On the other hand, the quantum dynamics of these functions are also studied. Our results indicate that the probability density first evolves along the unstable manifold emanating from the periodic orbit, and localizes temporarily afterwards on only a few, short related periodic orbits. We believe that this type of studies can provide some keys to disentangle the complexity associated to the quantum mechanics of these kind of systems, which permits the construction of a simple explanation in terms of the dynamics of a few classical structures.