We
present an investigation of the excited-state structural parameters
determined for a large set of small compounds with the dual goals
of defining reference values for further works and assessing the quality
of the geometries obtained with relatively cheap computational approaches.
In the first stage, we compare the excited-state geometries obtained
with ADC(2), CC2, CCSD, CCSDR(3), CC3, and CASPT2 and large atomic
basis sets. It is found that CASPT2 and CC3 results are generally
in very good agreement with one another (typical differences of ca.
3 × 10–3 Å) when all electrons are correlated
and when the aug-cc-pVTZ atomic basis set is employed with both methods.
In a second stage, a statistical analysis reveals that, on the one
hand, the excited-state (ES) bond lengths are much more sensitive
to the selected level of theory than their ground-state (GS) counterparts
and, on the other hand, that CCSDR(3) is probably the most cost-effective
method delivering accurate structures. Indeed, CCSD tends to provide
too compact multiple bond lengths on an almost systematic basis, whereas
both CC2 and ADC(2) tend to exaggerate these bond distances, with
more erratic error patterns, especially for the latter method. The
deviations are particularly marked for the polarized CO and CN bonds,
as well as for the puckering angle in formaldehyde homologues. In
the last part of this contribution, we provide a series of CCSDR(3)
GS and ES geometries of medium-sized molecules to be used as references
in further investigations.