Smart systems are characterized by the integration in a single device of multi-domain subsystems of different technological domains, namely, analog, digital, discrete and power devices, MEMS, and power sources. Such challenges, emerging from the heterogeneous nature of the whole system, combined with the traditional challenges of digital design, directly impact on performance and on propagation delay of digital components.
This article proposes a design approach to enhance the RTL model of a given digital component for the integration in smart systems with the automatic insertion of delay sensors, which can detect and correct timing failures. The article then proposes a methodology to verify such added features at system level. The augmented model is abstracted to SystemC TLM, which is automatically injected with mutants (i.e., code mutations) to emulate delays and timing failures. The resulting TLM model is finally simulated to identify timing failures and to verify the correctness of the inserted delay monitors. Experimental results demonstrate the applicability of the proposed design and verification methodology, thanks to an efficient sensor-aware abstraction methodology, by applying the flow to three complex case studies.