1992
DOI: 10.1090/s0002-9939-1992-1123658-6
|View full text |Cite
|
Sign up to set email alerts
|

Semigroup algebras of the full matrix semigroup over a finite field

Abstract: Abstract.Let M denote the multiplicative semigroup of all n-by-n matrices over a finite field F and K a commutative ring with an identity element in which the characteristic of F is a unit. It is proved here that the semigroup algebra K[M] is the direct sum of n + 1 algebras, namely, of one full matrix algebra over each of the group algebras K[GL(r, F)] with r = 0, 1, ... , ». The degree of the relevant matrix algebra over A" [GL(r, F)] is the number of /■-dimensional subspaces in an «-dimensional vector space… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

1999
1999
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 5 publications
0
4
0
1
Order By: Relevance
“…The non-trivial maximal subgroup is isomorphic to F × q . A result of Kovács in [23] implies that the structure matrix is invertible whenever the characteristic of k does not divide q. The case of the complex field was first proved by Okniński and Putcha in [28].…”
Section: Theorem 14mentioning
confidence: 97%
See 1 more Smart Citation
“…The non-trivial maximal subgroup is isomorphic to F × q . A result of Kovács in [23] implies that the structure matrix is invertible whenever the characteristic of k does not divide q. The case of the complex field was first proved by Okniński and Putcha in [28].…”
Section: Theorem 14mentioning
confidence: 97%
“…The distinguished ideal of Mat n×n (F 2 ) has rank 2 n − 1 by a result of Kovács [23] (see the discussion below where general q is considered). The unique minimal effective representation is then the linearization of the action by partial maps on F n 2 \ {0}.…”
Section: Theorem 14mentioning
confidence: 99%
“…Kovács [12]. This followed a related announcement by Faddeev [5], and related results by Okniński and Putcha [18].…”
Section: A Theorem Of Lg Kovácsmentioning
confidence: 83%
“…Si k est un corps fini, le foncteur K[Gr n ] est encore simple si K est de caractéristique différente de celle de k, mais la démonstration précédente ne s'applique plus. La simplicité se déduit des résultats de Kuhn [42] (reposant sur le travail de Kovács [36] sur les représentations des monoïdes multiplicatifs M n (k)) déjà invoqués au corollaire 8.32. En revanche, si k est fini et de même caractéristique que K, alors K[Gr n ] n'est jamais simple si n > 0 -on peut même montrer qu'il est de dimension de Krull au moins n (et conjecturalement, de dimension de Krull exactement n -cf.…”
Section: Présentation Finie Et Généralisationsunclassified