We show that some results from the theory of group automata and monoid automata still hold for more general classes of monoids and models. Extending previous work for finite automata over commutative groups, we prove that the context-free language L 1 * = {a n b n : n ≥ 1} * can not be recognized by any rational monoid automaton over a finitely generated permutable monoid. We show that the class of languages recognized by rational monoid automata over finitely generated completely simple or completely 0-simple permutable monoids is a semi-linear full trio. Furthermore, we investigate valence pushdown automata, and prove that they are only as powerful as (finite) valence automata. We observe that certain results proven for monoid automata can be easily lifted to the case of context-free valence grammars.