The invasiveness and virulence of Shigella spp. are largely due to the expression of plasmid-encoded virulence factors, among which are the invasion plasmid antigens (Ipa proteins). After infection, the host immune response is directed primarily against lipopolysaccharide (LPS) and the virulence proteins (IpaB, IpaC, and IpaD). Recent observations have indicated that the Ipa proteins (IpaB, IpaC, and possibly IpaD) form a multiprotein complex capable of inducing the phagocytic event which internalizes the bacterium. We have isolated a complex of invasins and LPS from water-extractable antigens of virulent shigellae by ion-exchange chromatography. Western blot analysis of the complex indicates that all of the major virulence antigens of Shigella, including IpaB, IpaC, and IpaD, and LPS are components of this macromolecular complex. Mice or guinea pigs immunized intranasally with purified invasin complex (invaplex), without any additional adjuvant, mounted a significant immunoglobulin G (IgG) and IgA antibody response against the Shigella virulence antigens and LPS. The virulence-specific response was very similar to that previously noted in primates infected with shigellae. Guinea pigs (keratoconjunctivitis model) or mice (lethal lung model) immunized intranasally on days 0, 14, and 28 and challenged 3 weeks later with virulent shigellae were protected from disease (P < 0.01 for both animal models).Shigellosis is a leading cause of human diarrheal disease. Each year millions of cases occur, particularly in developing countries, with over 1 million cases resulting in death (15). The constant emergence of antibiotic resistance in Shigella spp. (12), even to the newest antibiotics, underscores the need for an effective vaccine to help control Shigella disease. Vaccine strategies must consider the need for protection against four species of Shigella (S. flexneri, S. sonnei, S. dysenteriae, and S. boydii) with over 45 different serotypes, and also enteroinvasive Escherichia coli (EIEC), as cross-protection is not significant between the species. Historically, successful Shigella vaccines have emphasized presentation of lipopolysaccharide (LPS) in a manner that will elicit protection. Such vaccines include live attenuated vaccines (25, 32) and delivery of Shigella LPS or O polysaccharides with carriers such as proteosomes (28), tetanus toxoid (6), or ribosomes (16). Of these vaccine approaches, only the live attenuated vaccines utilize the native invasiveness of the shigellae to deliver the LPS and other antigens to the mucosal immune system, presumably via the follicle-associated epithelium (33). The residual pathogenicity of the attenuated vaccine strains may limit this approach unless further attenuation is achieved (7).The pathogenesis of Shigella is attributed to the organism's ability to invade, replicate intracellularly, and spread intercellularly within the colonic epithelium. The invasion of host cells by Shigella spp. is a complex multifactorial event in which many different bacterial proteins are involved. M...