2022
DOI: 10.1007/978-3-031-21550-6_2
|View full text |Cite
|
Sign up to set email alerts
|

Semisimplicity of the Frobenius Action on π1

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 23 publications
0
2
0
Order By: Relevance
“…]/I^n)\Bigr ) \,. \end{equation*}$$As in [7, section 3.1], we have a canonical isomorphism scriptOfalse(π1normalktrueénormalt,Qp(XCK,x¯)false)badbreak≅Qp[false[π̂1ktrueénormalt(XCK,x¯)false]]$$\begin{equation} {\mathcal O}(\pi _1^{\mathrm{k\acute{e}t},{\mathbb {Q}}_p}(X_{{\mathbb {C}}_K},\bar{x}))^\vee \cong {\mathbb {Q}}_p[\! [\hat{\pi }_1^\mathrm{k\acute{e}t}(X_{{\mathbb {C}}_K},\bar{x})]\!…”
Section: Comparison Between éTale and De Rham Fundamental Groupoidsmentioning
confidence: 99%
See 1 more Smart Citation
“…]/I^n)\Bigr ) \,. \end{equation*}$$As in [7, section 3.1], we have a canonical isomorphism scriptOfalse(π1normalktrueénormalt,Qp(XCK,x¯)false)badbreak≅Qp[false[π̂1ktrueénormalt(XCK,x¯)false]]$$\begin{equation} {\mathcal O}(\pi _1^{\mathrm{k\acute{e}t},{\mathbb {Q}}_p}(X_{{\mathbb {C}}_K},\bar{x}))^\vee \cong {\mathbb {Q}}_p[\! [\hat{\pi }_1^\mathrm{k\acute{e}t}(X_{{\mathbb {C}}_K},\bar{x})]\!…”
Section: Comparison Between éTale and De Rham Fundamental Groupoidsmentioning
confidence: 99%
“…Remark We do not actually need the full strength of Theorem 1.4 for the results in this paper; in fact it just suffices to know that xEtrueénormalt,an${}_x{\mathbb {E}}^{\mathrm{\acute{e}t},{\rm an}}$ is a pro‐de Rham local system. This can actually be proved rather quickly and indirectly, see, for example, [7, Remark 3.2]. However, Theorem 1.4 implies something stronger about the pro‐unipotent Kummer map jp$j_p$: not only is it locally constant modulo prefixHe1$\operatorname{H}^1_e$, but it is locally analytic and can be explicitly described in terms of iterated integrals on small discs, much as in the Chabauty–Kim method for curves.…”
Section: Introductionmentioning
confidence: 99%