2015
DOI: 10.1007/s10231-015-0546-3
|View full text |Cite
|
Sign up to set email alerts
|

Semistable reduction of a normal crossing $$\mathbb {Q}$$ Q -divisor

Abstract: In a previous work we have introduced the notion of embedded Q-resolution, which essentially consists in allowing the final ambient space to contain abelian quotient singularities, and A'Campo's formula was calculated in this setting. Here we study the semistable reduction associated with an embedded Q-resolution so as to compute the mixed Hodge structure on the cohomology of the Milnor fiber in the isolated case using a generalization of Steenbrink's spectral sequence. Examples of Yomdin-Lê surface singularit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
3
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 23 publications
0
3
0
1
Order By: Relevance
“…+ , définies dans (3) et calculées dans (4). La suite spectrale généralisée de Steenbrink dans [8] implique que le nombre de 2-blocs de Jordan pour λ = 1 est 1 − b 0 (D…”
Section: Version Franc ¸Aise Abrégéeunclassified
See 3 more Smart Citations
“…+ , définies dans (3) et calculées dans (4). La suite spectrale généralisée de Steenbrink dans [8] implique que le nombre de 2-blocs de Jordan pour λ = 1 est 1 − b 0 (D…”
Section: Version Franc ¸Aise Abrégéeunclassified
“…The Jordan blocks of size 2 for λ = 1 appears in the 2nd and 4th W -graded parts of H. This is a consequence of the fact that i = 3 is the central index of the monodromy filtration for λ = 1, see [8] for a more careful explanation.…”
Section: Generalized Steenbrink's Spectral Sequencementioning
confidence: 99%
See 2 more Smart Citations