Ubiquitin defines a family of approximately 20 peptidic post-translational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to-3) and Nedd8 are the bestcharacterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin-, SUMO-and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer. 4 most substrates being constantly modified and demodified. Deconjugation is carried out by isopeptidases, which cleave the isopeptide bonds between UbLs and target lysines. This allows UbLs, which are highly stable polypeptides, to be recycled and reconjugated to other proteins. Some isopeptidases are also involved in the proteolytic maturation of UbLs, which are synthetized in the form of precursors displaying extra amino-acids at their C-termini. Similar to E3s, isopeptidases show substrate specificity or, at least, preference for particular chain linkages [9]. Concerning the SUMO pathway, deSUMOylases, such as SENP6 and SENP7, preferentially cleave SUMO-2 chains, whilst others, such as SENP-1 and SENP-2, rather deconjugate SUMO bound to target proteins [10]. Some deSUMOylases such as SENP-3, SENP-5 and USPL1 have preference for SUMO-2 over SUMO-1 [11, 12]. The consequences of UbL conjugation are numerous. They depend on the UbL type, possibly the nature of UbL chains formed and, obviously, the substrate. As they have been reviewed extensively elsewhere [3, 13-15], only the main physiological roles of Ubiquitylation, SUMOylation and Neddylation are considered hereafter. The biological outcomes of Ubiquitin conjugation are highly dependent on the chain linkage types, which, due to their diversity and complexity, create the so-called "Ubiquitin code" [14]. The most abundant and best-characterized Ubiquitin chains are long K48-linked ones (>4 Ubiquitins). They constitute a protein degradation signal recognized by the 26S proteasome, which is the main cell proteolytic machinery [16-18]). This discovery led Avram Hershko, Irwin Rose an Aaron Ciechanover to be awarded the Nobel Prize in 2004. It is, however, important to keep in mind that K48-linked Ubiquitin chains can also be involved in signaling events and transcription regulation not involving protein destruction [19-21]. K63-linked chains are bestknown as involved in protein-protei...