The effective control over the outbreak of COVID-19 in China showcases a prompt government response, in which, however, the allocation of attention, as an essential parameter, remains obscure. This study is designed to clarify the evolution of the Chinese government’s attention in tackling the pandemic. To this end, 674 policy documents issued by the State Council of China are collected to establish a text corpus, which is then used to extract policy topics by applying the latent dirichlet allocation (LDA) model, a topic modelling approach. It is found that the response policies take different tracks in a four-stage controlling process, and five policy topics are identified as major government attention areas in all stages. Moreover, a topic evolution path is highlighted to show internal relationships between different policy topics. These findings shed light on the Chinese government’s dynamic response to the pandemic and indicate the strength of applying adaptive governance strategies in coping with public health emergencies.