Activities of daily living (ADL) are important indicators for awareness of brain health in the elderly, and hospitals use ADL as a standard test for diagnosing chronic brain diseases such as dementia. However, since it is difficult to judge real-life ADL in hospitals, doctors typically predict ADL ability through interviews with patients or accompanying caregivers. Recently, many studies have attempted to diagnose accurate brain health by collecting and analyzing the real-life ADL of patients in their living environments. However, most of these were conducted by constructing and implementing expensive smart homes with the concept of centralized computing, and ADL data were collected from simple data about patientsâ home appliance usage and the surrounding environment. Despite the high cost of building a smart home, the collected ADL data are inadequate for predicting accurate brain health. In this study, we developed and used three types of portable devices (wearable, tag, and stationary) that can be easily installed and operated in typical existing houses. We propose a self-organized device network structure based on edge computing that can perform user perception, location perception, and behavioral perception simultaneously. This approach enables us to collect user activity data, analyze ADL in real-time to determine if the userâs behavior was successful or abnormal, and record the physical ability of the user to move between fixed spaces. The characteristics of this proposed system enable us to distinguish patients from other family members and provide real-time notifications after a forgetful or mistaken action. We implemented devices that constitute the edge network of the smart home scenario and evaluated the performance of this system to verify its usefulness.