A drug delivery system based on an aqueous-induced in situ forming gel (ISG) consists of solubilizing the drug within an organic solution of a polymer using a biocompatible organic solvent. Upon contact with an aqueous medium, the solvent diffuses out and the polymer, designed to be insoluble in water, solidifies and transforms into gel. Nitrocellulose (Nc), an aqueous insoluble nitrated ester of cellulose, should be a promising polymer for an ISG using water induction of its solution to gel state via phase inversion. The aim of this investigation was to develop and evaluate a moxifloxacin HCl (Mx)-incorporated aqueous-induced Nc-based ISG for periodontitis treatment. The effects of different solvents (N-methyl pyrrolidone (NMP), DMSO, 2-pyrrolidone (Py), and glycerol formal (Gf)) on the physicochemical and bioactivity properties of the ISGs were investigated. The viscosity and injection force of the ISGs varied depending on the solvent used, with Gf resulting in higher values of 4631.41 ± 52.81 cPs and 4.34 ± 0.42 N, respectively. All ISGs exhibited Newtonian flow and transformed into a gel state upon exposure to the aqueous phase. The Nc formulations in DMSO showed lower water tolerance (12.50 ± 0.72%). The developed ISGs were easily injectable and demonstrated water sensitivity of less than 15.44 ± 0.89%, forming a gel upon contact with aqueous phase. The transformed Nc gel effectively prolonged Mx release over two weeks via Fickian diffusion, with reduced initial burst release. Different solvent types influenced the sponge-like 3D structure of the dried Nc ISGs and affected mass loss during drug release. Incorporating Nc reduced both solvent and drug diffusion, resulting in a significantly narrower zone of bacterial growth inhibition (p < 0.05). The Mx-incorporated Nc-based ISGs exhibited efficient antibacterial activity against four strains of Staphylococcus aureu and against periodontitis pathogens including Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. This study suggests that the developed Mx-incorporated Nc-based ISGs using DMSO and NMP as the solvents are the most promising formulations. They exhibited a low viscosity, ease of injection, and rapid transformation into a gel upon aqueous induction, and they enabled localized and prolonged drug release with effective antibacterial properties. Additionally, this study represents the first reported instance of utilizing Nc as the polymer for ISG. Further clinical experiments are necessary to evaluate the safety of this ISG formulation.