The relationship between electrophoretic mobility and molar conductivity has previously led to speculation on achieving quantitation in zone electrophoresis without calibration curves when using conductivity detection. However, little work in this area has been pursued, possibly because of the breakdown of simple sensitivity-mobility relationships when working with partially protonated species. This topic is revisited with the aid of electrophoretic simulation software that produces facile predictions of analyte sensitivity relative to an internal standard. Calibration curve slopes for over 50 analyte/internal standard/BGE combinations were measured with both unbiased and electrokinetically biased injections using microchip electrophoresis with conductivity detection. The results were compared to theoretical expectations as computed with PeakMaster software. Good agreement was observed, with some systems being predicted with quantitative accuracy while others showed significant deviations. Some mechanisms that can lead to deviations from theory are demonstrated, but the causes for some discrepancies are still not understood. Overall, this work exhibits another useful application for simulation software, particularly for disposable devices where device-specific calibration curves cannot be collected. It also serves as quantitative validation for some outputs of PeakMaster simulation software.