In this paper, sensitivity analysis and optimization of a high altitude long endurance (HALE) solar aircraft was implemented. Zephyr S was referred to for the aircraft conference configuration, and OpenVSP and XFLR5 were employed to create configuration and perform aerodynamic analysis. In the conceptual design stage of the HALE solar aircraft, technology identification, evaluation, and selection (TIES) methodology was employed. According to the design requirements, problem definition was established, and design goal, variations, and targeted values were set up to implement independent design variables to meet the design requirements. Based on the design of experiments (DOE), modeling of the relationship between design objective parameters and independent design values was implemented. The independent design variables with the largest influence were selected in the screening test. By employing the selected independent design variables, regression equations and sensitivity profiles were produced through response surface method. Inter-factor relationship was easily analyzed through the sensitivity profile. Regression equations were employed in the Monte Carlo simulation to draw design objective parameter values for 10,000 combinations of independent design variables. As a result of the Monte Carlo simulation, the design feasibility of design objective parameters was assessed. Optimization was performed using the desirability function of JMP software, and constraints were applied to each design objective parameter to derive the optimum values of independent design variables. Then, the values of optimized design independent variables were applied to the solar aircraft design framework and analyzed for the endurance flight performance. By comparing the endurance of the optimized configuration with the reference configuration, it was confirmed that the endurance could be improved by using the methodology proposed in this study.