The crosslinked polyethylene (XLPE) cable safety is affected by environmental factors and artificial defects during operation. This work proposes an improved locating method based on broadband impedance spectrum (BIS) to locate local defects in XLPE cables. The calculation process of the algorithm has been analyzed. The selection of the incident Gaussian signal and the peak recognition method have been discussed, where the pulse width of the Gaussian signal was found to be determined primarily by the upper limit frequency of the traveling wave transmitting in the cable. The centroid and function fitting methods were established to reduce the peak recognition error caused by the test sampling rate. This work verified the accuracy of the algorithm through experiments. A vector network analyzer (VNA) was used to test the BIS of the cable. A 20 m-long cable containing abrasion and an inserted nail with different depths was measured in the BIS test. It was found that the abrasion and the nail could be located. The locating deviation of abrasion was within ±1%, and the centroid and function fitting methods could effectively reduce the locating deviation. The locating deviation was within ±1% when the depth of the nail inserted into the cable accounted for less than 50% of the insulation thickness. When the depth exceeded 75% of the insulation thickness, the deviation of each method was more significant, and the maximum absolute value of the deviation was 4%.