Shape adaption (SA) via piezo-ceramic actuation, and active flow control (AFC) by means of fluid injection and aspiration, are investigated within the Cluster of Excellence for Sustainable and Energy-Efficient Aviation (SE2A) with the goal of increasing the efficiency of multi-stage compressors—particularly at part-load, and of extending their operating range. Although both technologies have shown to be beneficial for the compressor off-design operation, drawbacks are still apparent at the aerodynamic design point when a single rotor or stator is equipped with SA or AFC, because of wake disturbances, which increase the incidence angle of the following row. Especially matching an improved component with its respective stage counterpart poses a major challenge in both research areas and is, therefore, addressed within this investigation. This work focuses on the first two stages of a high-pressure compressor, to compare and evaluate different combinations of shape adaption and active flow control. By considering structural requirements, such as a minimum blade thickness for the actuator application, and aerodynamic sensitivities, such as flow incidence and deviation due to off-design operation, a suitable configuration is derived and investigated in further detail.