This study considered how climate change affects the accumulation of snow, the soil moisture and soil frost at sites without tree cover in boreal conditions in Finland (60°-70°N). An increase of 4.5 °C in annual mean temperature and 20 % in annual precipitation were assumed for Finland by the year 2100 according to A2 emission scenario. Along with climate, the soil type of the permanent inventory plots of the Finnish National Forest Inventory was used. Soil and climate data were combined by using a process-based ecosystem model. Calculations were done for four periods: current climate , near future (2001-2020), mid-term future (2021-2050) and long-term future (2071-2100). According to our simulations, the average monthly duration and depth of snow decreased over the simulation period. However, the increasing precipitation may locally increase the snow depths in the mid-term calculations. In the autumn and winter, the average volumetric soil moisture content slightly increased in southern Finland during the near future, but decreased towards the end of the century, but still remained on a higher level than presently. In northern Finland, the soil moisture in the autumn and winter increased by the end of this century. In the summertime soil moisture decreased slightly regardless of the region. Throughout Finland, the length and the depth of soil frost decreased by the end of the century. In the south, the reduction in the depth was largest in the autumn and spring, while in the mid-winter it remained relatively deep in the middle of the century. In the north, the depth tended to increase during the first two calculation periods, in some areas, even during the third calculation period (2071-2100) due to reduced insulation effects of snow during cold spells. The wintertime increase in soil moisture and reduced soil frost may be reflected to reduced carrying capacity of soil for timber harvesting.