As an important branch of wearable electronics, flexible pressure sensors have attracted extensive research owing to their wide range of applications, such as human–machine interfaces and health monitoring. To fulfill the requirements for different applications, new material design and device fabrication strategies have been developed in order to manipulate the mechanical and electrical properties and enhance device performance. In this paper, the important progresses in flexible pressure sensor development over recent years are selectively reviewed from a material and application perspective. First, an overview of the fundamental working mechanism and the systematic design approach is presented. Particularly, how the theoretical modeling has been used as an auxiliary tool to achieve better sensing performance is discussed. A number of applications, including human–machine interfaces, electronic skin and health monitoring, and certain application‐driven functions, e.g., pressure distribution visualization and direction‐sensitive force detection, are highlighted. Lastly, various advanced manufacturing methods used for realizing large‐scale fabrication are introduced.