Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction: The study focuses on evaluating the reliability of prefabricated perimeter walls in substations during flood events. It employs a sophisticated numerical model based on actual engineering data to assess their load-bearing capabilities. The research investigates the impact of crucial flood parameters on the structural behavior of these walls, examines the force transmission mechanisms, and suggests “W-shaped” reinforcement techniques to mitigate stress-related issues.Methods: To meet our research goals, we developed an extensive numerical model for prefabricated perimeter walls, incorporating real-world engineering data. This model enabled us to analyze critical flood parameters, such as flood depth, flow velocity, and flood erosion. Furthermore, we investigated the force transmission mechanisms within the walls and introduced “W-shaped” reinforcement strategies to improve their load-bearing capacity.Results: Our results indicate that flood depth and flow velocity have a substantial impact on the performance of prefabricated perimeter walls, while flood erosion has a minor effect. Safety concerns become prominent when flood depth exceeds 1.0 m or flow velocity surpasses 3 m per second. Analysis of force transmission mechanisms reveals greater displacements at higher water levels. Critical areas, including wall panel-column and wall panel-foundation connections, experience heightened stress levels.Discussion: Our study highlights the significant role of flood depth and flow velocity in evaluating the load-bearing capacity of prefabricated perimeter walls in substation environments. To address potential structural weaknesses, we recommend implementing “W-shaped” wall reinforcement methods, which efficiently decrease both displacement and stress. These findings carry implications for substation design and flood resilience, underscoring the importance of comprehensive flood risk management strategies to protect internal facilities during floods.
Introduction: The study focuses on evaluating the reliability of prefabricated perimeter walls in substations during flood events. It employs a sophisticated numerical model based on actual engineering data to assess their load-bearing capabilities. The research investigates the impact of crucial flood parameters on the structural behavior of these walls, examines the force transmission mechanisms, and suggests “W-shaped” reinforcement techniques to mitigate stress-related issues.Methods: To meet our research goals, we developed an extensive numerical model for prefabricated perimeter walls, incorporating real-world engineering data. This model enabled us to analyze critical flood parameters, such as flood depth, flow velocity, and flood erosion. Furthermore, we investigated the force transmission mechanisms within the walls and introduced “W-shaped” reinforcement strategies to improve their load-bearing capacity.Results: Our results indicate that flood depth and flow velocity have a substantial impact on the performance of prefabricated perimeter walls, while flood erosion has a minor effect. Safety concerns become prominent when flood depth exceeds 1.0 m or flow velocity surpasses 3 m per second. Analysis of force transmission mechanisms reveals greater displacements at higher water levels. Critical areas, including wall panel-column and wall panel-foundation connections, experience heightened stress levels.Discussion: Our study highlights the significant role of flood depth and flow velocity in evaluating the load-bearing capacity of prefabricated perimeter walls in substation environments. To address potential structural weaknesses, we recommend implementing “W-shaped” wall reinforcement methods, which efficiently decrease both displacement and stress. These findings carry implications for substation design and flood resilience, underscoring the importance of comprehensive flood risk management strategies to protect internal facilities during floods.
Continuous rigid-framed bridges with super-high piers (CRFB-HP) have been widely applied in mountain areas. However, their seismic performance is still urgently to be clarified. In this study, the refined finite element model (FEM) of a CRFB-HP was constructed and verified according to the shaking table test results of its scaled model. On this basis, systematic elastic‒plastic time history analysis of the CRFB-HP was conducted to investigate the influence of parameters on their seismic performance, including main bridge span, pier height and number of tie beams. The results show that CRFB-HP have the characteristic of long vibration periods and are more sensitive to long-period ground motions. Along the longitudinal and transverse directions, the peak pier top displacement and pier bottom bending moment of CRFB-HP are both relatively large under NLPL (+20%~+70%) and NFPT (TP ≈ T1, +50%~+120%) excitations. For the same span, the peak pier top displacement increases with the pier height increasing, while the peak pier bottom bending moment decreases with the pier height increasingFor the same pier height, the peak pier top displacement and peak pier bottom bending moment both increase with the span length increasing. Moreover, the pier height change has a greater effect on the pier top displacement than that of the span change. CRFB-HP show obvious high-order response participation (HRP) under different ground motions. The NFPT (TP ≈ T1,) ground motions can significantly increase HRP. Moreover, compared with cast-in-place CRFB-HP, the HRP of a fabricated super-high pier is greater (+20%~+30%). The peak pier top displacement and pier bottom bending moment both decrease with the increase in the number of tie beams. The reasonable arrangement of tie beams can improve the lateral seismic performance of CRFB-HP. However, compared to the cast-in-place CRFB-HP, the peak pier top displacement is larger, and the peak pier bottom bending moment is smaller, for the fabricated CRFB-HP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.