2010
DOI: 10.1098/rspa.2009.0499
|View full text |Cite
|
Sign up to set email alerts
|

Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions

Abstract: This paper proposes an exact analytical formula for the topological sensitivity of the macroscopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic response is assumed to be predicted by a well-established multi-scale constitutive theory where the macroscopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields over a representative volume element (RVE) of material. The proposed formula-a symmetric fourth-order tensor field… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
24
0

Year Published

2010
2010
2020
2020

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(24 citation statements)
references
References 25 publications
0
24
0
Order By: Relevance
“…!o et al (2002); Masmoudi et al (2005)), image processing (Auroux et al (2007); Belaid et al (2008); Hintermüller (2005) ; Amstutz et al (2012); Bojczuk and Mróz (2009) ;Burger et al (2004); Giusti et al (2008Giusti et al ( , 2010b; Kobelev (2010); Leugering and Sokołowski (2008); Novotny et al (2003Novotny et al ( , 2005Novotny et al ( , 2007; Turevsky et al (2009)). See also applications of the topological derivative in the context of multiscale constitutive modeling ; Giusti et al (2010aGiusti et al ( , 2009a; Novotny et al (2010)), fracture mechanics sensitivity analysis (Ammari et al (2014); Van Goethem and Novotny (2010)) and damage evolution modeling (Allaire et al (2011)). Regarding the theoretical development of the topological asymptotic analysis, see for instance (Amstutz (2006(Amstutz ( , 2010 ;Feijóo et al (2003); Garreau et al (2001); Hlaváček et al (2009); Khludnev et al (2009); Lewinski and Sokołowski (2003); Nazarov and Sokołowski (2003a,b, 2005, 2006, 2011; Żochowski (2003, 2005)), as well as the book by Novotny and Sokołowski (2013).…”
Section: Introductionmentioning
confidence: 99%
“…!o et al (2002); Masmoudi et al (2005)), image processing (Auroux et al (2007); Belaid et al (2008); Hintermüller (2005) ; Amstutz et al (2012); Bojczuk and Mróz (2009) ;Burger et al (2004); Giusti et al (2008Giusti et al ( , 2010b; Kobelev (2010); Leugering and Sokołowski (2008); Novotny et al (2003Novotny et al ( , 2005Novotny et al ( , 2007; Turevsky et al (2009)). See also applications of the topological derivative in the context of multiscale constitutive modeling ; Giusti et al (2010aGiusti et al ( , 2009a; Novotny et al (2010)), fracture mechanics sensitivity analysis (Ammari et al (2014); Van Goethem and Novotny (2010)) and damage evolution modeling (Allaire et al (2011)). Regarding the theoretical development of the topological asymptotic analysis, see for instance (Amstutz (2006(Amstutz ( , 2010 ;Feijóo et al (2003); Garreau et al (2001); Hlaváček et al (2009); Khludnev et al (2009); Lewinski and Sokołowski (2003); Nazarov and Sokołowski (2003a,b, 2005, 2006, 2011; Żochowski (2003, 2005)), as well as the book by Novotny and Sokołowski (2013).…”
Section: Introductionmentioning
confidence: 99%
“…(3.8). This will be achieved by taking local average values, in the spirit of a multiscale approach as proposed by Germain et al [14] and later developped in, e.g., [15,25]. The main result of this section is that incompatibility of the homogenized strain reads inc E =η− I 2 trη withη = 2∇×κ…”
Section: Homogenization Of a Transfinite Family Of Rectifiable Dislocmentioning
confidence: 99%
“…where α is a non negative dimensional parameter 15 (scalar or tensorial) and where inc(·) on the RHS is an elliptic operator of order two in the sense of Legendre and Hadamard [8]. Hence, provided appropriate boundary conditions, the incompatibility driven Bravais flow is parabolic and shows existence on every times interval, as opposed to ordinary Ricci flows [9,16,26,29].…”
Section: Flow Of the Bravais Strainmentioning
confidence: 99%
See 2 more Smart Citations