Growing animal data evince a critical role of the sensory cortex in the long-term storage of aversive conditioning, following acquisition and consolidation in the amygdala. Whether and how this function is conserved in the human sensory cortex is nonetheless unclear. We interrogated this question in a human aversive conditioning study using multidimensional assessments of conditioning and long-term (15 d) retention. Conditioned stimuli (CSs; Gabor patches) were calibrated to differentially activate the parvocellular (P) and magnocellular (M) visual pathways, further elucidating cortical versus subcortical mechanisms. Full-blown conditioning and long-term retention emerged for M-biased CS (vs limited effects for P-biased CS), especially among anxious individuals, in all four dimensions assessed: threat appraisal (threat ratings), physiological arousal (skin conductance response), perceptual learning [discrimination sensitivity (d9) and response speed], and cortical plasticity [visual evoked potentials (VEPs) and cortical current density]. Interestingly, while behavioral, physiological, and VEP effects were comparable at immediate and delayed assessments, the cortical substrates evolved markedly over time, transferring from high-order cortices [inferotemporal/fusiform cortex and orbitofrontal cortex (OFC)] immediately to the primary and secondary visual cortex after the delay. In sum, the contrast between P-and M-biased conditioning confirms privileged conditioning acquisition via the subcortical pathway while the immediate cortical plasticity lends credence to the triadic amygdala-OFC-fusiform network thought to underlie threat processing. Importantly, long-term retention of conditioning in the basic sensory cortices supports the conserved role of the human sensory cortex in the long-term storage of aversive conditioning.