Although segregation of both simultaneous and sequential speech items may be involved in the reception of speech in noisy environments, research on the latter is relatively sparse. Further, previous studies examining the ability of hearing-impaired listeners to form distinct auditory streams have produced mixed results. Finally, there is little work investigating streaming in cochlear implant recipients, who also have poor frequency resolution. The present study focused on the mechanisms involved in the segregation of vowel sequences and potential limitations to segregation associated with poor frequency resolution. An objective temporal-order paradigm was employed in which listeners reported the order of constituent vowels within a sequence. In Experiment 1, it was found that fundamental frequency based mechanisms contribute to segregation. In Experiment 2, reduced frequency tuning often associated with hearing impairment was simulated in normal-hearing listeners. In that experiment, it was found that spectral smearing of the vowels increased accurate identification of their order, presumably by reducing the tendency to form separate auditory streams. These experiments suggest that a reduction in spectral resolution may result in a reduced ability to form separate auditory streams, which may contribute to the difficulties of hearing-impaired listeners, and probably cochlear implant recipients as well, in multi-talker cocktail-party situations.