Power consumption has become one of the primary challenges to meet the Moore's law. For reducing power consumption, Single-Electron Transistor (SET) at room temperature has been demonstrated as a promising device for extending Moore's law due to its ultra-low power consumption during operation. Prior work has proposed an automated mapping approach for SET arrays which focuses on minimizing the number of hexagons in an SET array. However, the area of an SET array is more related to the width. Consequently, in this work, we propose an approach for width minimization of the SET arrays. The experimental results show that the proposed approach saves 26% of width compared with the state-of-the-art for a set of MCNC and IWLS 2005 benchmarks while spending similar CPU time.